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OVERVIEW OF THE COURSE
Lecture 1: General course information, CRISP-DM methodology
Lecture 2: Supervised learning/unsupervised learning. Classification/regression problems. Accuracy metrics 
(precision, recall, ROC-AUC scores). Concept of loss functions, overfitting / underfitting.
Lecture 3: Classical ML: Linear regression, logistic regression, support vector machine
Lecture 4: Classical ML: Decision trees, random forests, boosting.
Lecture 5: Classical ML: Dimensionality reduction: linear, non-linear methods.
Lecture 6: Classical ML: Clustering methods
Lecture 7: Basic neural networks
Lecture 8: Scalable algorithms 



RECAP OF LECTURE 7

— Fully connected neural network
— Learning 
— Backpropagation
— Types of NN architectures (brief summary)



PLAN OF LECTURE 8

Scalable algorithms
Distributed training
Randomized PCA
Approximate nearest neighbors
Incremental learning



SCALABLE ALGORITHMS

— Scalable algorithms in machine learning refer to the ability of an algorithm to handle large 
datasets and efficiently process them in a timely manner. 

— As the volume of data continues to grow exponentially, the need for scalable algorithms has 
become increasingly important in the field of machine learning.



SCALABLE ALGORITHMS: OPTIONS
There are two options for scalable algorithms

— Use the available hardware as efficient as possible (use GPUs, more efficient parallelization).
   We will talk about distributed computations.

— Select other algorithms (maybe more difficult to implement or less accurate) that have better 
asymptotic with respect to the size of the dataset and dimensionality of the problem.

   We will talk about randomized PCA and approximate nearest neighbors for clustering.



KEY CHARACTERISTICS (1)
There are several recipes that help to make machine learning 
algorithms scalable:
— Parallel Processing: Scalable algorithms utilize parallel 
processing techniques to distribute the workload among 
multiple processors or computing nodes. This allows for faster 
and more efficient processing of large datasets, as the data can 
be divided and processed simultaneously.

— Distributed Computing: In addition to parallel processing, 
scalable algorithms also use distributed computing techniques to 
distribute the data across multiple machines or clusters. This 
allows for efficient use of resources and reduces the processing 
time required for large datasets.



KEY CHARACTERISTICS (2)
Incremental Learning: Scalable algorithms use incremental learning techniques, where the model is continuously 
updated as new data is fed into the system. This allows for real-time learning and adaptation to changing data patterns, 
without having to retrain the entire model from scratch.

Sampling Techniques: Another important aspect of scalable algorithms is the use of sampling techniques, where a 
subset of the data is used for training instead of the entire dataset. This helps in reducing the computational time and 
resources required for training, while still maintaining a good level of accuracy.

Dimensionality Reduction: High-dimensional datasets can pose a challenge for traditional machine learning 
algorithms. 
Scalable algorithms employ dimensionality reduction techniques to reduce the number of features in the dataset, 
making it more manageable and easier to process.



LARGE-SCALE COMPUTATIONS: 
NEED TO USE GPUS

For machine learning, most of the computations utilize graphical cards, 
GPU (Graphical processing units)

They are much more efficient than central processing units (CPUs).

Even old GPUs in Google Colab are much faster than CPUs!



PEAK PERFORMANCE
To measure the computational power of the device, we use Flops (floating point 
operations per second):

Flops is defined as the maximal possible number of operations 
the device can do per second.

CPU has peak performance of order hundreds of Gigaflops, whereas 
GPU has peak performance or order tens and hundreds of Teraflops.

Giga = , Tera = 109 1012



PEAK PERFORMANCE OF MAIN GPUS

Different floating point formats give different accuracy of the computations;
FP32 — single precision, 32 bit per floating point number
FP64 — double precision, 64 bit per floating point number, rarely used in ML



DISTRIBUTED TRAINING

For larger datasets a single GPU is not enough thus we need to use several GPUs.

To train a sufficiently large model at least 2-4 GPUs are needed.

Thus, we have to effectively distribute computations between different computational nodes.

This is called distributed training.



PRACTICAL PERFORMANCE

In practice we get the performance which is much smaller than the peak performance.

Even for very optimized code, used for training large deep neural network models, such as 
transformer-based model, we have the performance that is about 30-40% of the peak 
performance.

Now let’s discuss distributed training.



DISTRIBUTED TRAINING
Let’s illustrate the process of distributed training on the example of 
stochastic gradient descent  for deep neural network training

The idea is to 
a) Keep the parameters of the model on the Parameter Server
b) Use different computational nodes to compute the gradients 
over different parts of the data

The training can be synchronous or asynchronous



DISTRIBUTED TRAINING: SYNCRONOUS
— In synchronous training, the parameter 
server waits for all gradients from all workers 
before updating the model parameters.

— This leads to a higher quality parameter 
update due to less noisy average gradients.

— However if some workers take longer to 
compute their gradients, other workers are 
idle and resources are wasted.

— Ideally, every machine should have a task 
at all times to maximize efficiency.

Synchronous data-parallelism. Before sending the updated 
model parameters, the parameter server aggregates the 
gradients from all workers. (Image source: Langer et al 

2020, link)


https://arxiv.org/abs/2007.03970


DISTRIBUTED TRAINING: ASYNCRONOUS
— We can employ asynchronous training, where the 
parameter server updates the model parameters as soon 
as it receives a single gradient from a single worker, and 
sends the updated parameters immediately back to that 
worker. 

— This approach maximizes efficiency by keeping all 
workers busy at all times, but it can result in lower quality 
parameter updates due to the noisy average gradients. 

— Overall, asynchronous training is a trade-off between 
efficiency and accuracy, and the optimal choice depends 
on the specific needs and resources of the training task.

Asynchronous data-parallelism. Each worker sends their local 
gradients to the parameter server, and receives the model 

parameters. (Image source: Langer et al 2020, link)


https://arxiv.org/abs/2007.03970


SUMMARY OF DISTRIBUTED TRAINING
Distributed training is based on the idea of splitting of computation of the sum

 over different workers and updating the parameters

Different machines works with different parts of the data — data parallelism

Modern deep learning models take Gigabytes of memory — may not fit into a single GPU

One can distribute model parameters between different computational nodes — much more complicated.

f(θ) =
N

∑
i=1

l(yi, ̂yi)



USING FASTER ALGORITHMS

When we have large and/or high-dimensional datasets, we may use algorithms that have 
better asymptotic with respect to number of samples and the dimensionality.

Let’s illustrate it on the case of Principle Component Analysis.



PCA: REMINDER

In PCA, we have the data matrix  of size , 
where  is the number of features, 
and  is the number of data points.

A standard PCA will require forming an  covariance matrix 
and computing its k leading eigenvectors, or, equivalently, 
computing  first k singular vectors of matrix X.

X d × N
d

N

d × d



PCA: COMPLEXITY
Complexity of the SVD-based computation of the PCA will be , 
where Big-O notation means that the total number of arithmetic operations 

is bounded by a constant times 

Can we do faster? 

There are several fast approximate SVD algorithms, 
with the randomized SVD being very popular.

𝒪(nd2)

nd2



RANDOMIZED PCA

For randomized PCA, we do the following iterative process

1. We initialize a random matrix  of size  where  is slightly larger than k
2. We project the data  randomly into a p-dimensional subspace as 
     , matrix  has size 
3. We compute left singular vectors of , giving the k principal components.
4. There is a theoretical justification for this algorithm
5. The complexity is now  and if  this is a significant reduction

Q n × p p

Y = XQ Y d × p
Y

𝒪(dnp) p ≪ d



SCALABLE CLUSTERING

K-Means is frequently used for exploring large datasets, 
since it scales linearly with the number of points.

However, it has limitations:
1. The dataset has exactly k clusters
2. Every data point must be in a cluster, real-world data may contain noise.
3. K-means assumes the data have similar size and number of points.



SCALABLE CLUSTERING: HDBSCAN

HDBSCAN stands for 
Hierarchical Density-Based Spatial Clustering of Applications 
with Noise

It’s a clustering algorithm that overcomes many of the limitations 
of k-means. For example, it does not require a difficult-to-
determine parameter to be set before it can be used.

• Hierarchical: arranges points into hierarchies of clusters 
within clusters, allowing clusters of different sizes to be 
identified.

• Density-Based: uses density of neighboring points to 
construct clusters, allowing clusters of any shape to be 
identified.

• Applications with Noise: expects that real-world data is 
filled with noise, allowing noise points to be identified and 
excluded from clusters.



TRADITIONAL IMPLEMENTATION OF HDBSCAN

The traditional implementation of HDBSCAN consists of 
two main phases
— Construct the k-nearest-neighbors (k-NN) graph, with 
an undirected edge connecting each point p to the k most 
similar points to p. Use the k-NN information to define a 
new metric called the mutual reachability distance between 
all pairs of points in the data

— Find the minimum spanning tree (MST) connecting all 
points in the data according to the mutual reachability 
distance. This tree represents a hierarchy of clusters, and 
the individual clusters can be extracted using a simple 
heuristic.

Detailed description: https://hdbscan.readthedocs.io/en/
latest/how_hdbscan_works.html

Example of the minimal spanning tree, 
according to a special metric between points

https://en.wikipedia.org/wiki/Nearest_neighbor_graph
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html


SCALING

— Construction of k-NN graph scales quadratically with the size of the dataset
— Constructing the minimal spanning tree also scales quadratically

Not applicable to large datasets.

What can we do?



APPROXIMATING THE K-NN GRAPH

To approximate step 1, we can use NN-descent algorithm

It is based on the principle that the neighbor of a neighbor is likely to be a neighbor. 

— Each point p keeps a list of k other points, which are the k closest points to p that have 
been found so far. 

— In each update step, two randomly chosen a and b in the neighbor list of a point are 
compared. If b is closer to a than the farthest point in a’s neighbor list, then the farthest point 
in a’s neighbor list is replaced by b. 

— Repeating this update improves the accuracy of the k-NN graph approximation with each 
iteration.



APPROXIMATING MINIMAL SPANNING TREE

— To approximate step 2, we find the minimum spanning tree of the graph 
produced by NN-Descent rather than the complete graph connecting all data 
points. 

— The only important edges of the MST are those which connect points in the 
same cluster, and those edges should mostly be present in the k-NN graph. 

— Doing this drastically reduces the size of the graph input to the MST algorithm, 
and allows the computation to scale to larger datasets.



SUMMARY ON FASTER CLUSTERING

Such kind of approximate nearest neighbors + efficient graph operations 

give 5x times improvement already on not very large datasets, with similar quality!



INCREMENTAL LEARNING

The concept of incremental learning:

— The model is continuously updated as new data is fed into the system. 

— This allows for real-time learning and adaptation to changing data patterns, 
without having to retrain the entire model from scratch.

Example: fine-tuning a large model on a small dataset.



INCREMENTAL LEARNING (2)

A standard pipeline is that you take a deep 
neural networks consisting of k layers.

The large model is retrained on large, 
annotated dataset (such as ImageNet)

The new model is trained on a small dataset, 
but the first layers are frozen.

This concept of pretraining is very powerful: 
one can use such pretrained models for 
many downstream task, and the cost of fine-
tuning is negligible.



SCALING OF DIFFERENT ALGORITHMS FOR 
LARGE DATA

— k-means clustering: scales well

— Random forest: scales well, since trained on a subset of data

— Gradient boosting: similar, scales well

— Deep learning algorithms: scales well

— Kernel methods: does not scale well due to quadratic memory and cubic complexity 
with respect to the number of samples, can be solved with selecting smaller sample.



RECAP OF LECTURE 8

— Scalable algorithms: distributed computing

— Randomized PCA

— Approximate nearest neighbors.



NEXT LECTURE

WE ARE DONE WITH LECTURES!


