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OVERVIEW OF THE COURSE
Lecture 1: General course information, CRISP-DM methodology
Lecture 2: Supervised learning/unsupervised learning. Classification/regression problems. Accuracy metrics 
(precision, recall, ROC-AUC scores). Concept of loss functions, overfitting / underfitting.
Lecture 3: Classical ML: Linear regression, logistic regression, support vector machine
Lecture 4: Classical ML: Decision trees, random forests, boosting.
Lecture 5: Classical ML: Dimensionality reduction: linear, non-linear methods.
Lecture 6: Classical ML: Clustering methods
Lecture 7: Basic neural networks
Lecture 8: Scalable algorithms 



RECAP OF LECTURE 6

— Definition of clustering
— K-Means
— Cluster validity measures
— Hierarchical clustering
— Graph cuts
— DBScan



PLAN OF LECTURE 7

— Fully connected neural network
— Learning 
— Backpropagation
— Types of NN architectures (brief summary)



BRIEF HISTORY OF NEURAL NETWORKS

History of neural networks goes back to 
1940.

Scientists tried to mimic human brain 

and came up with the idea of 
artificial neural networks



PERCEPTRON
— Perceptrons are the simplest form of neural networks, 
consisting of a single layer of interconnected nodes. 
— They were first introduced in the 1950s by psychologist 
Frank Rosenblatt as a way to simulate the functioning of a 
single neuron in the brain.
— The basic structure of a perceptron consists of an input 
layer, a single layer of interconnected nodes, and an 
output layer. Each node in the input layer represents a 
feature or input variable, and each node in the output layer 
represents a class or category. 
— The nodes in the hidden layer perform calculations 
based on the inputs and pass the result to the output layer, 
where the final prediction is made.



PROPERTIES OF THE PERCEPTRON
— The activation function is a crucial component of a 
perceptron. It determines the output of each node 
based on the weighted sum of its inputs. The most 
commonly used activation function in perceptrons is 
the step function, which outputs a 1 if the weighted 
sum is above a certain threshold and -1 otherwise.

— One of the main limitations of single-layer 
perceptrons is that they can only learn linearly 
separable patterns. This means that they can only 
classify data that can be separated by a straight line or 
plane. This restricts their ability to handle more 
complex data and makes them unsuitable for tasks 
such as image recognition or language processing.



PERCEPTRON LEARNING ALGORITHM

— The learning algorithm for perceptrons is known 
as the Perceptron Rule. 
— It is a supervised learning algorithm that adjusts 
the weights of the connections between nodes 
based on the error between the predicted output 
and the actual output. 
— This process is repeated for multiple iterations 
until the perceptron can accurately classify the 
data.
— The update makes the classification of the point 
correct.



MULTILAYER PERCEPTRON
— To overcome this limitation, multi-layer perceptrons 
(MLPs) were developed, which have one or more hidden 
layers between the input and output layers. These hidden 
layers allow MLPs to learn non-linear relationships in data.
 
—Multi-layer perceptrons (MLPs) are a type of artificial neural 
network that consists of multiple layers of interconnected 
nodes. They were developed in the 1980s as an extension of 
the single-layer perceptron, in order to overcome its limitations 
and improve its performance on more complex tasks.



MULTILAYER PERCEPTRON

— The architecture of a multi-layer perceptron typically 
consists of an input layer, one or more hidden layers, 
and an output layer. The input layer contains nodes 
that represent the input variables, and the output layer 
contains nodes that represent the predicted output. 

— The hidden layers perform calculations based on the 
inputs and pass the results to the next layer until the 
final prediction is made in the output layer.



MULTILAYER PERCEPTRON
— One of the key differences between single-
layer perceptrons and MLPs is the use of non-
linear activation functions. 
— The most commonly used activation 
functions in MLPs are the sigmoid function and 
the Rectified Linear Unit (ReLU) function. 
— The sigmoid function maps the input to a 
value between 0 and 1, while the ReLU 
function returns the input if it is positive, or 0 
otherwise.

, where g is 
an activation function:

.

yk = fk(yk−1) = g(Wkyk−1 + bk)

σ(x) =
1

1 + e−x
, ReLu(x) = max(x,0)



MULTILAYER PERCETRON AND DEEP NEURAL 
NETWORK

— Multilayer perceptron is also called fully 
connected deep neural network.
— It can be mathematically written as a 
superposition of simple functions: linear 
transformations and point wise activation 
functions.

, where g is 
an activation function:

.

yk = fk(yk−1) = g(Wkyk−1 + bk)

σ(x) =
1

1 + e−x
, ReLu(x) = max(x,0)



MLP PARAMETERS

— In the supervised setting, we need to 
determine the parameters (weights) of the 
network.
— This can be done using gradient-based 
optimization using so-called back propagation 
algorithm

, where g is 
an activation function:

.

yk = fk(yk−1) = g(Wkyk−1 + bk)

σ(x) =
1

1 + e−x
, ReLu(x) = max(x,0)



DEEP NEURAL NETWORK: TRAINING

Deep neural network is parametrized by its parameters (weights and biases).
In supervised setting we need to solve the minimization of the form:

f(θ) =
N

∑
k=1

l(yk, ̂yk) → min , s.t. ̂yk = f(xk, θ)



INFORMAL ILLUSTRATION OF DEEP NEURAL 
NETWORK TRAINING

Suppose our neural network has 3 computational blocks

We take the the input and predict the output. 
We need to compute all intermediate inputs.
Our output is different from the ground truth.
We need to correct the previous block (hidden layer) to make a 
correct output.
Then we need to correct previous input to make a better output.
In such a way, we correct the last block, then the previous, etc.



FORMAL DESCRIPTION OF GRADIENT DESCENT

We just update the parameters using the gradient descent:

, 

and for sufficiently small  we will have

Thus, we need an efficient way to compute the gradient!

θk+1 = θk − λ∇f(θk)
λ

f(θk+1) < f(θk)



STOCHASTIC OPTIMIZATION
Recall that we have optimization of the form

The sum goes over all the points in the dataset. Suppose we have million points in the dataset. 
The gradient is the some of the gradients of each term.
Computing all is too much for a single gradient.
Instead, we can select a random sample from the dataset (called batch) and some over it

The size of the batch is typically small (32-1024 samples), and is determined by the limitations of the memory 
(larger batch sizes do not fit).

f (θ) =
N

∑
k=1

l(yk, ̂yk), ̂yk = f (xk, θ) → min

̂f (θ) =
B

∑
k=1

l(yik, ̂yik) ≈ f (θ)



MODIFICATIONS OF STOCHASTIC 
OPTIMIZATION

Besides vanilla Stochastic Gradient Descent (SGD) 
there are many variants, which intend to speed up the computations.

Among them:
— SGD with momentum
— Adaptive Momentum optimization (Adam)-mostly widely used method.

The idea of momentum is as follows: we have a noisy estimate of the gradients, if we smooth it, we get a better 
direction for changing the parameters.

Disadvantage: need to store additional parameters 
(for SGD two times more memory, for Adam 3 times more memory).



BACKPROPAGATION
The gradient of the cost functional for neural networks is computed using the 
process called backpropagation.

Fundamental fact (Baur-Strassen theorem): 
if we can evaluate the function  of P variables using M operations, 
we can evaluate the gradient (i.e., P numbers) using cM operations, where c is a 
small constant.

This is highly non-trivial result (and often surprising even for professionals in 
numerical analysis).



FORMAL DESCRIPTION OF BACKPROPAGATION

The backpropagation is derived for the computation of gradients of superposition of 
functions.

Suppose we have 3 layers, given by 3 functions:
.

We want to compute .    

y1 = f1(x, θ1), y2 = f2(y1, θ2), y3 = f3(y2, θ3)
∂y3

∂θ1
,

∂y3

∂θ2
,

∂y3

∂θ3



FORMAL DESCRIPTION OF 
BACKPROPAGATION (2)

Suppose we have 3 layers, given by 3 functions:
.

We want to compute .    

Computing the gradient with respect to  is easy, we need to compute the gradient of .
Computing the gradient with respect to  can be done using chain rule.

, and the latter is also available.

Want you need to compute, is the product of the Jacobian of the layer function times the vector.
For basic layers it is implemented In a cheap way.

y1 = f1(x, θ1), y2 = f2(y1, θ2), y3 = f3(y2, θ3)
∂y3

∂θ1
,

∂y3

∂θ2
,

∂y3

∂θ3

θ3 y3

θ2
∂y3

∂θ2
=

f3(y2, θ3)
∂y2

∂y2

∂θ2



IMPORTANT PROBLEM IN TRAINING: 
GRADIENT EXPLOSION/VANISHING.
When you take the product in the backpropagation, the gradient 
can explode or go to vanish (go to zero), resulting in unstable 
learning.

Question: What will be the consequence of vanishing gradient? 
Of exploding gradient?

There are solutions to this problem, that we do not cover — 
batch normalization and residual connections.

∇θk+1
f = Jk…Jd−2Jd−1

∂f
∂yd



SUMMARY OF BACKPROPAGATION

— We consider superposition of simple functions
— We compute the forward pass and store all intermediate activations
— We go backwards through the computational graph, computing gradients and 
Jacobian matrix-by-vector product
— This is an efficient implementation of the classical chain rule.



DEEP NETWORKS IN PRACTICE: CAT VS DOGS

AI could not recognize cat vs dogs in 2006.
Best algorithms could do it with 60% accuracy.
In 2011, DNN algorithms can do it with 99.9% 
What changed? New algorithms have been proposed?
Answer is no. We first learned to use old algorithms
properly, and only then new ideas were proposed.



IMAGENET

Imagenet: 
10M manually labelled images
with 1000 classes.

Considered to be a tough case,
now it is quite easy case.



CONVOLUTIOONAL NEURAL NETWORKS

The biggest breakthrough for deep neural networks have been image classification 
using CNN (convolutional neural networks)

Image in ImageNet has size 224x224x3, around 150k parameters.
A linear layer will require a matrix of size 150k x 150k, which is too much.

Instead, it has been proposed to use a subclass of linear transformations, 
which is very well suited for images — convolutions.



CONVOLUTIONAL NEURAL NETWORK 
ARCHITECTURE

An example of the convolutional neural network 
architecture is shown on the right. 

Each layer operates on a three-dimensional array: 

Width x Height x Channels

We can mix channels, but in spatial dimensions we 
do a convolution with a filter (see image on the right).

Also, one can use pooling operation



CONVOLUTION AND POOLING

Convolution is defined by a kernel

There are different types of pooling, namely max-pooling and 
average pooling.

In Max-pooling we take the maximum over the block as an 
output.

In average pooling, we average the pixels.

This reduces the spatial resolution (number of neurons).



SUMMARY OF CONVOLUTIONAL NEURAL 
NETWORKS PART

Vanilla convolution for images is parametrized by a 4-dimensional tensor:

, i.e. the size of the convolution, the number of input channels, and the 
number of output channels.

These parameters are learned in a supervised way.

Convolutions use the locality of the images.
Non-local dependencies are obtained from pooling

W1 × W2 × Cin × Cout



MODIFICATION OF CNN

There were several modifications of CNN, including:
— Residual connections: instead of  we write a layer as 

. This allows training of deeper networks

— Special convolutions with fewer number of parameters
— Specially designed basic computational blocks.
— Current good choices for image classification  is a ResNet network, or EfficientNet 
network. 

yk+1 = F(yk)
yk+1 = yk + F(yk)



WORKING WITH SEQUENCES

— Neural networks can be applied for 
working with sequences, such as text or 
DNA sequences
— Classical approaches include recurrent 
neural network and their variants.
— SOTA (state-of-the art) approaches use 
transformer-based models.



RECAP OF LECTURE 7

— Fully connected neural network
— Learning 
— Backpropagation
— Types of NN architectures (brief summary)



RECENT ADVANCES IN NEURAL NETWORKS

- Deep learning and its impact on neural networks
- Generative adversarial networks (GANs)
- Autoencoders and their applications
- Transfer learning and pre-trained models



NEXT LECTURE

Scalable algorithms


