
LECTURE 4: CLASSICAL ML: DECISION TREES/
RANDOM FORESTS/BOOSTING

EKATERINA MURAVLEVA

OVERVIEW OF THE COURSE
Lecture 1: General course information, CRISP-DM methodology
Lecture 2: Supervised learning/unsupervised learning. Classification/regression problems. Accuracy metrics
(precision, recall, ROC-AUC scores). Concept of loss functions, overfitting / underfitting.
Lecture 3: Classical ML: Linear regression, logistic regression, support vector machine
Lecture 4: Classical ML: Decision trees, random forests, boosting.
Lecture 5: Classical ML: Dimensionality reduction: linear, non-linear methods.
Lecture 6: Classical ML: Clustering methods
Lecture 7: Basic neural networks
Lecture 8: Scalable algorithms

RECAP OF LECTURE 3

- Linear regression
- Logistic regression
- Support vector machine
- Kernel trick

PLAN OF LECTURE 4

- Decision trees
- Random forests
- Gradient boosting

DECISION TREE

The decision tree is a method in
machine learning, which tries to mimic
the rules for solving different problems

The tree on the right describes the
answer to the question ‘what to do’?

COMPONENTS OF THE DECISION TREE
Decision tree consists of nodes and branches

Root Node: The first node in the path
Leaf Nodes: End of decision path
Internal Nodes: can be decision nodes or chance
nodes (where it has branches)

WHAT DECISION TREE CAN BE USED FOR

Decision trees can be used for classification and regression

The predictions of decision trees are very interpretable and explainable

Question: How to learn a decision tree given some data?

HOW TO TRAIN A DECISION TREE (1)

Decision trees are trained from top to bottom (from the root).

In the first step, we only have a root node.

We need to split this root node into child nodes.

How we do that?

LEARNING DECISION TREE

A good split separates the classes. A bad split does not. It is measured using information gain

ENTROPY

Information gain is defined using entropy

Entropy is defined as , where is probability of class

For binary classification, we have two classes, thus

Question: If all samples in a node belong to the same class, what is
the entropy?

∑
i

− pi log pi pi i

Entropy = − p+ log p+ − p− log p−

INFORMATION GAIN

Given the split of the Parent node into Children, we
can define the Information Gain as

Information Gain = Entropy(Parent Node) -
AverageEntropy(Children)

LEARNING DECISION TREE
Training data consists of many instances of the following kind:

i.e., objects with attributes.

We assign all instances to the root node.
Then for each attribute:
 Partition all the data instances (samples) at the node by the value of a single attribute
 Compute how good is the split using Information gain (or other metrics)
After the split: if the child has only one class, stop.

 If not, recursively split.

PROBLEMS WITH INFORMATION GAIN
The problem with information gain is that it may create unbalanced trees:
some children have small number of samples.

Another approach used in CART (Classification and Regression Trees)

Is the following ‘goodness function’: t is the root node, s is the split, are left and right
children, simultaneously and are sizes of the split.

tL, tR
PL, PR

φ(s ∣ t) = 2PLPR

class count

∑
j=1

P (j ∣ tL) − P (j ∣ tR)

WORKING WITH CONTINUOUS VARIABLES
(REGRESSION TASK)
The criteria described before are for discrete target variables (classification task)

For regression task, we need to select another criteria.

The standard approach is to use variance of the estimated variable. If the variance is small, the prediction is good.
It is defined as

Where are the set of presplit sample indices, set of sample indices for which the split test is true, and set
of sample indices for which the split test is false, respectively.

IV(N) =
1

|S |2 ∑
i∈S

∑
j∈S

1
2 (yi − yj)

2
−

St
2

|S |2
1

St
2 ∑

i∈St

∑
j∈St

1
2 (yi − yj)

2
+

Sf
2

|S |2
1

Sf
2 ∑

i∈Sf

∑
j∈Sf

1
2 (yi − yj)

2

S, St, Sf

DIFFERENT WAYS OF GROWING TREES

For practical implementation, one
can choose different order of
growing trees:

Level-wise (or depth-wise) and
leaf-wise

They are shown on the pictures

DECISION TREES: SUMMARY

Decision trees are easy to interpret.

Decision trees tend to overfit the training data, especially if there size of training data is small.

A solution to this is creating not a single decision tree, but ensemble of them.

RANDOM FOREST

Random forest is the set of decision trees

For regression their answers are averaged

For classification their answers are selected
using majority voting

HOW TO BUILD RANDOM FOREST

Each decision tree is trained independently on:

1. Random subsets of the datasets (maybe intersecting)
2. Each split in each tree is selected from randomly selected features
3. The tree is built until each node has only samples from one class.

The main principle of ensembling: base models should be good and diverse.

PROPERTIES OF RANDOM FOREST

1. (+) Generalize better than decision trees
2. (-) Are not interpretable as easy as decision
trees.
3. (+) Actively used as baselines

BOOSTING

Super-powerful idea in classical machine learning
is boosting

We train a simple model (i.e., decision tree) and
then train another model to correct the errors.

It is a part of a general robustness theory for AI
models: they always will make mistakes.

GRADIENT BOOSTING (1)

Let be our training set.

Let be the algorithm (model) that predicts using certain loss function

Let be the corrector model that tries to solve

What dataset we should train b on?

(xi, yi)

a(x) a(xi) ≈ yi L(y, a)

b(x)

a(xi) + b(xi) = yi

GRADIENT BOOSTING (2)

Lets write down the optimization problem as

The function decays as fast as possible in the direction of the anti-gradient.
Thus it is quite natural to train on the dataset ,

In other words,

N

∑
i=1

L(yi, a(xi) + bi) → min

b (xi, − L′ (yi, a(xi))
b(xi) ≈ bi = − L′ (yi, a(xi))

GRADIENT BOOSTING (3)
Suppose,

Then the total prediction will be

Depending on the loss function, we can add a learning rate parameter here, yielding

For sufficiently small, we will have

b(xi) ≈ − L′ (yi, a(xi))

a(xi) + b(xi) = a(xi) − L′ (yi, a(xi))

a(xi) + ηb(xi) ≈ a(xi) − ηL′ (yi, a(xi))

η L(yi, a(xi) + ηb(xi))) < L(yi, a(xi))

GRADIENT BOOSTING (4)

We are training

Example 1: , , thus for quadratic function we are

approximating the error of approximation

Example 2: Logistic loss

The anti-gradient differs a lot from approximation of the error.

b(xi) ≈ − L′ (yi, a(xi))

L(y, a) =
1
2

(y − a)2 −L′ (y, a) = y − a

L(y, a) = log (1 + e−y⋅a), a ∈ (−∞, + ∞), y ∈ {−1, + 1}

GRADIENT BOOSTING (5)
Suppose we have learned the correct model,

We can do this multiple times!

Suppose we have algorithm , and we train on the set

b1(xi) ≈ − L′ (yi, a(xi))

an(x) =
n

∑
t=1

bt(x)

at(x) bt(x) (xi, − L′ (yi, at(xi)))

GRADIENT BOOSTING (6)

Instead of the gradient direction

We can try to fit the Newton direction:

This approach is used in the famous XGBoost library.

b1(xi) ≈ − L′ (yi, a(xi))

b1(xi) ≈ −
L′ (yi, a(xi))
L′ ′ (yi, a(xi))

STOCHASTIC VERSION

We can use the same idea as in the random forests and
train correction models on random subsets of the initial dataset.

- Can improve the quality of the ensemble
- Reduce the time of computations

SOTA BOOSTING LIBRARIES

- Boosting is used with decision trees
- Modern libraries are XGBoost, CatBoost, LightGBM
- They differs in implementation, used algorithms for ‘growing trees’, types of boosting, etc

GRADIENT BOOSTING: EXAMPLE

Consider gradient boosting for the
following regression problem.

We need to predict y from x,
y = a(xi)

FIRST STEP

The first step is to create a simple
model (naive prediction).

As an initial prediction, we will use the
mean value

COMPUTING RESIDUALS

The naive prediction is very
inaccurate, so we need to
approximate the residual (remember
the anti-gradient formulation for the
square loss function).

COMPUTING RESIDUALS
We will now build very simple decision
trees as corrector models

They have one split and two leaf nodes.

Typically, gradient boosting uses trees
from 8 to 32 leaf nodes.
We will use the tree that predicts two
values 6.0, -5.9
This prediction is added to the initial
prediction:

In this example, we can take
F1 = F0 + νγ1

ν = 0.9

NEW APPROXIMATION

After update, our combined prediction
becomes

F1 = {F0 + ν6.0, x ≤ 49.5,
F0 − ν5.9 otherwise

NEW RESIDUALS

The updated residuals look like this

NEXT STEP

In the next step, we create the
regression tree again using x as a
feature

NEXT APPROXIMATION

The next approximation has the
following form

AFTER ITERATIONS…
The next approximation has the
following form

RECAP OF LECTURE 4

- Decision trees
- Random forests
- Gradient boosting

NEXT LECTURE

Classical ML:
Dimensionality reduction: linear and non-linear methods

