
LECTURE 3: CLASSIC ML: LINEAR MODELS

EKATERINA MURAVLEVA

OVERVIEW OF THE COURSE
Lecture 1: General course information, CRISP-DM methodology
Lecture 2: Supervised learning/unsupervised learning. Classification/regression problems. Accuracy metrics
(precision, recall, ROC-AUC scores). Concept of loss functions, overfitting / underfitting.
Lecture 3: Classical ML: Linear regression, logistic regression, support vector machine
Lecture 4: Classical ML: Decision trees, random forests, boosting.
Lecture 5: Classical ML: Dimensionality reduction: linear, non-linear methods.
Lecture 6: Classical ML: Clustering methods
Lecture 7: Basic neural networks
Lecture 8: Scalable algorithms

RECAP OF LECTURE 2

- Supervised learning/unsupervised learning.
- Classification/regression problems. Accuracy metrics
 (precision, recall, ROC-AUC scores)
- Concept of loss functions
- Overfitting / underfitting

PLAN OF LECTURE 3

- Linear regression
- Logistic regression
- Support vector machine
- Kernel trick

‘CLASSICAL MACHINE LEARNING’

In the upcoming lectures, I will cover what is referred to as classical machine learning,

The term ‘classic’ is an opposite to the more modern deep-learning based methods.

Most basic model in machine learning is a ‘linear model’. However, those model can be quite
complicated, as we will see.

RECAP: SUPERVISED LEARNING

We are given the training set and we are trying to fit the model

What is the model we can imagine?

{xi, yi}, i = 1,…, M

̂yi = f(xi, θ) ≈ yi

LINEAR MODEL

How to parametrize the function ?
Of course, it depends on the application!
Simplest model is the linear model

 for regression

 for classification

Here are certain known functions

y = f(x, θ)

f(x, θ) =
n

∑
j=1

θj fj(x)

f(x, θ) = sign
n

∑
j=1

θj fj(x)

fj(x)

LINEAR REGRESSION MODEL (2)
The choice of functions is very important.

For example, consider the same data, but
different features (quadratic model vs model with
a sine function)

 features:

It is not very easy to understand, which model is
better in this case.

X = Y = ℝ, l = 200, n = 3,
{x, x2,1}, or{x, sin x,1}

LINEAR MODEL FOR BINARY CLASSIFICATION
In binary classification, we need to separate blue
points from orange points using a linear function

This function has to be > 0 for class 1 (orange)
and < 0 for class 0

The set is called decision boundary

In linear classification, f is given a linear function
of parameters .

f(x, θ)

f(x) = 0

θ

SIGMOID FUNCTION (1)
As a loss function, one can use the empirical risk, given as the number of correct
predictions.

The problem with such loss is that it is difficult to optimize.

Instead, there are several approaches, the simplest one is to replace a sign
function with a smoothed version.

The standard approach uses the sigmoid function

σ(̂y) =
1

1 + e− ̂y

SIGMOID FUNCTION (2)
The linear model predicts the score function

Then, it is put into the sigmoid function

and we get the value from [0, 1] which is
interpreted as a probability of predicting class 1.

I.e if y is negative, , if is positive, then

̂y = f (x, θ)

σ(̂y) =
1

1 + e− ̂y

σ(y) <
1
2

y σ(y) >
1
2

BINARY CROSS-ENTROPY
The linear model predicts the score function

Then, it is put into the sigmoid function

For class 1, we need to maximize ;
For class 0, we need to maximize
Typically, instead of probability, the logarithm of
probability is considered, so we maximize

Here is the label (0 or 1) and is the predicted probability

̂y = f (x, θ)

σ(̂y) =
1

1 + e− ̂y

σ(̂y)
1 − σ(̂y)

l(y, ̂y) = y log σ(̂y) + (1 − y)log(1 − σ(̂y))

y σ(̂y)

BINARY CROSS ENTROPY (OR LOGISTIC) LOSS
The final loss is updated by summing all of the individual losses:

Note the minus on the left!
Now we are left with optimization problem with respect to the parameters of the linear model for

There is no explicit formula, but it can be shown, that this is a
convex optimization with respect to

J(θ) = −
N

∑
i=1

yi log (σ (̂yi)) + (1 − yi) log (1 − σ (̂yi)) → min

θ ̂y

̂y =
n

∑
j=1

fj(x)θj

θ

GRADIENT DESCENT
One can use gradient descent or stochastic gradient
descent to update parameters.

In its simplest form, the update is

One can evaluate the gradients very efficiently.

In the stochastic gradient descent, we only use a few
examples at each update.

For convex optimization, most of the results on convergence
and optimal methods are well known.

θ := θ − α
∂J
∂θ

LINEAR MODEL FOR MULTI-CLASS CLASSIFICATION
Consider multi class classification with K classes.
Then, instead of predicting the probability of class
1, we predict the probabilities of K classes
simulatenously.

The model predicts K scores (vector). In order for
them to be interpreted as probabilities, they need to
be:
a) non-negative
b) sum up to one

This can be achieved by taking exponent and
dividing by sum — softmax operation

̂y

̂y = f(x, θ), p = softmax(ŷ)

pi =
e ̂yi

∑K
j=1 e ̂yj

CROSS-ENTROPY LOSS

The generalization of binary cross-entropy to
cross entropy is done straightforwardly:

We maximize the probability of the true class!

 Let be the one-hot encoding of the label
(vector of length K).

 Then,

Question for understanding: what happens if K = 2?

̂y = f(x, θ), p = softmax(ŷ)

pi =
e ̂yi

∑K
j=1 e ̂yj

yi

l(y, ̂y) = ∑
i

yi log pi → max

MULTINOMIAL LOGISTIC REGRESSION: SUMMARY
We can use linear mapping + one-hot encoding +
cross-entropy loss.

For a linear model, the problem is still convex

Can be solved by optimization techniques for
convex problems.

In practice, often run stochastic gradient descent

Instead of one decision boundary, we have many!

LINEAR MODEL FOR CLASSIFICATION: SUPPORT VECTOR MACHINE

For linear support vector machine we want to find
a separating hyperplane for two classes.

LINEAR MODEL FOR CLASSIFICATION: SUPPORT VECTOR MACHINE

For linear support vector machine we want to find
a separating hyperplane for two classes.

Consider 2D case.

A lot of possible solutions for

Support vector is an element of the training set
that would change position of the hyperplane if
removed.

a, b, c

LINEAR MODEL FOR CLASSIFICATION: SUPPORT VECTOR MACHINE

Define hyperplanes such that

The plane is the median in-between, where

(w, xi) + b ≥ + 1 when yi = + 1
(w, xi) + b ≤ − 1 when yi = − 1

H0

(w, x) + b = 0

MAXIMIZING THE MARGIN
We want a classifier (=linear separator) with as big margin, as possible.

The distance between a point and a line

 is (elementary geometry)

So the distance between and is

 and the total distance between and is

To maximize the margin, we need to minimize

(x0, y0)
Ax + By + c

|Ax0 + By0 + c |

A2 + B2

H0 H1
1

∥w∥
H1 H2

2
∥w∥

∥w∥

SVM LOSS FUNCTION
The final loss function for SVM has the form

Where is the regularization parameter which controls the
misclassification (indeed, if the two sets are not separable, we
need to regularize

The problem is convex, but non-smooth.

Also, we only have scalar products of in this
formulation!

1/2 | |w | |2 + C∑
i

(max(0,1 − yi(wT xi + b)) → min

C

(w, xi)

GOING FROM LINEAR MODEL TO NON-LINEAR MODEL

What happens, if the data is not linearly
separable?

Linear decision boundary can not split the data
into two classes.

We need to use non-linear decision boundary.

Question: How we can do that, while still leaving
model linear?

HIGH-DIMENSIONAL FEATURE MAP
Lets get back to the start of the lecture, where we
considered the following function:

We can say that instead of features we use
features ,
 With such features, the dataset can become
linearly separable!
However, if n is large, linear classification becomes
more and more complicated.
Here where kernel trick emerges.

f(x, θ) =
n

∑
j=1

θj fj(x)

x
f1(x) f2(x)…, fn(x)

KERNEL TRICK
Instead of working with explicit feature map

 (we will need to store n coefficients
then)
We can work with scalar products

It can be shown, that all of the loss functions can
be written in terms of the kernel function,
we don’t need the explicit feature map!

[g(xi)]j = fj(xi)

(g(xi), g(xk)) = K(xi, xk)

HOW WE CAN TRANSFORM THE PROBLEM
This is called the primal problem (only for the linearly separable data!!!!)

It can be shown, that it can be reformulated as a dual problem (highly non-trivial derivation!, see https://
engineering.purdue.edu/ChanGroup/ECE595/files/Lecture20_SVM2.pdf)

 where is the set of non-zeros in

minimize
w,w0

1
2

∥w∥2
2

 subject to yj (wT xj + w0) ≥ 1, j = 1,…, N .

maximize
λ≥0

−
1
2

N

∑
i=1

N

∑
j=1

λiλjyiyjxT
i xj +

N

∑
j=1

λj

 subject to
N

∑ λjyj = 0.

w* = ∑
j∈𝒱

λjyjxj 𝒱 λ

https://engineering.purdue.edu/ChanGroup/ECE595/files/Lecture20_SVM2.pdf
https://engineering.purdue.edu/ChanGroup/ECE595/files/Lecture20_SVM2.pdf

FINALLY! KERNEL TRICK!

We can replace with and get the non-linear SVM.

Question: How to get the decision boundary from ?

maximize
λ≥0

−
1
2

N

∑
i=1

N

∑
j=1

λiλjyiyjxT
i xj +

N

∑
j=1

λj

 subject to
N

∑ λjyj = 0.

x⊤
i xj K(xi, xj)

λ

STANDARD KERNELS

Kernel function has to be positive definite (generalization of positive definite
matrices)

Examples:
1. Linear kernel:

2. Polynomial kernel:

3. Gaussian (RBF) kernel:

K(x, y)

K(xi, xj) = xT
i xj

K(xi, xj) = (γxT
i xj + r)d

K(xi, xj) = exp(−γ | |xi − xj | |2)

KERNEL METHODS: PROS AND CONS

1. Can handle complex non-linear decision boundaries
2. Need to work with a kernel matrix of size , where N is the size of the dataset.

3. Complexity typically grows as . Good for small datasets, can not scale easily to
million-sized dataset.
4. Some of those problems can be solved by inverting the kernel trick , but it is an
advanced topic (see Random Fourier Features, if interested).

N × N
𝒪(N3)

KERNEL TRICK FOR REGRESSION

One can easily apply kernel trick for regression.

In fact, it is equivalent to the linear model of the form

, i.e. the linear model with dimension equal to the number of

samples in the dataset.

Instead of solving least squares problems, one has to carefully regularize the solution

f(x, θ) =
N

∑
i=1

θiK(x, xi)

RECAP OF LECTURE 3

- Linear regression
- Logistic regression
- Support vector machine
- Kernel trick

NEXT LECTURE

Classical ML:
Decision trees,
random forests,
boosting.

