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OVERVIEW OF THE COURSE
Lecture 1: General course information, CRISP-DM methodology
Lecture 2: Supervised learning/unsupervised learning. Classification/regression problems. Accuracy metrics 
(precision, recall, ROC-AUC scores). Concept of loss functions, overfitting / underfitting.
Lecture 3: Classical ML: Linear regression, logistic regression, support vector machine
Lecture 4: Classical ML: Decision trees, random forests, boosting.
Lecture 5: Classical ML: Dimensionality reduction: linear, non-linear methods.
Lecture 6: Classical ML: Clustering methods
Lecture 7: Basic neural networks
Lecture 8: Scalable algorithms 



RECAP OF LECTURE 2

- Supervised learning/unsupervised learning.
- Classification/regression problems. Accuracy metrics 
  (precision, recall, ROC-AUC scores)
- Concept of loss functions
- Overfitting / underfitting



PLAN OF LECTURE 3

- Linear regression
- Logistic regression
- Support vector machine
- Kernel trick



‘CLASSICAL MACHINE LEARNING’

In the upcoming lectures, I will cover what is referred to as classical machine learning,

The term ‘classic’ is an opposite to the more modern deep-learning based methods.

Most basic model in machine learning is a ‘linear model’. However, those model can be quite 
complicated, as we will see.



RECAP: SUPERVISED LEARNING

We are given the training set  and we are trying to  fit the model 

What is the model we can imagine? 

{xi, yi}, i = 1,…, M

̂yi = f(xi, θ) ≈ yi



LINEAR MODEL 

How to parametrize the function ?
Of course, it depends on the application!
Simplest model is the linear model

 for regression

 for classification

Here  are certain known functions 

y = f(x, θ)

f(x, θ) =
n

∑
j=1

θj fj(x)

f(x, θ) = sign
n

∑
j=1

θj fj(x)

fj(x)



LINEAR REGRESSION MODEL (2)  
The choice of functions is very important.

For example, consider the same data, but 
different features (quadratic model vs model with 
a sine function)

 features: 

It is not very easy to understand, which model is 
better in this case.

X = Y = ℝ, l = 200, n = 3,
{x, x2,1}, or{x, sin x,1}



LINEAR MODEL FOR BINARY CLASSIFICATION
In binary classification, we need to separate blue 
points from orange points using a linear function 

This function has to be > 0 for class 1 (orange) 
and < 0 for class 0 

The set  is called decision boundary

In linear classification, f is given a linear function 
of parameters .

f(x, θ)

f(x) = 0

θ



SIGMOID FUNCTION (1)
As a loss function, one can use the empirical risk, given as the number of correct 
predictions.

The problem with such loss is that it is difficult to optimize. 

Instead, there are several approaches, the simplest one is to replace a sign 
function with a smoothed version.

The standard approach uses the sigmoid function

σ( ̂y) =
1

1 + e− ̂y



SIGMOID FUNCTION (2)
The linear model predicts the score function

Then, it is put into the sigmoid function

and we get the value from [0, 1] which is 
interpreted as a  probability of predicting class 1.

I.e if y is negative, , if  is positive, then 

  

̂y = f (x, θ)

σ( ̂y) =
1

1 + e− ̂y

σ(y) <
1
2

y σ(y) >
1
2



BINARY CROSS-ENTROPY
The linear model predicts the score function

Then, it is put into the sigmoid function

For class 1, we need to maximize ;
For class 0, we need to maximize 
Typically, instead of probability, the logarithm of 
probability is  considered, so we maximize

  
Here  is the label (0 or 1) and  is the predicted probability

̂y = f (x, θ)

σ( ̂y) =
1

1 + e− ̂y

σ( ̂y)
1 − σ( ̂y)

l(y, ̂y) = y log σ( ̂y) + (1 − y)log(1 − σ( ̂y))

y σ( ̂y)



BINARY CROSS ENTROPY (OR LOGISTIC) LOSS
The final loss is updated by summing all of the individual losses:

Note the minus on the left!
Now we are left with optimization problem with respect to the parameters  of the linear model for 

There is no explicit formula, but it can be shown, that this is a 
convex optimization with respect to 

J(θ) = −
N

∑
i=1

yi log (σ ( ̂yi)) + (1 − yi) log (1 − σ ( ̂yi)) → min

θ ̂y

̂y =
n

∑
j=1

fj(x)θj

θ



GRADIENT DESCENT
One can use gradient descent or stochastic gradient 
descent to update parameters.

In its simplest form, the update is 

One can evaluate the gradients very efficiently.

In the stochastic gradient descent, we only use a few 
examples at each update.

For convex optimization, most of the results on convergence 
and optimal methods are well known. 

θ := θ − α
∂J
∂θ



LINEAR MODEL FOR MULTI-CLASS CLASSIFICATION
Consider multi class classification with K classes. 
Then, instead of predicting the probability of class 
1, we predict the probabilities of K classes 
simulatenously.

The model predicts K scores (vector ).  In order for 
them to be interpreted as probabilities, they need to 
be:
a) non-negative
b) sum up to one

This can be achieved by taking exponent and 
dividing by sum — softmax operation 

̂y              

                        

̂y = f(x, θ), p = softmax(ŷ)

pi =
e ̂yi

∑K
j=1 e ̂yj



CROSS-ENTROPY LOSS

The generalization of binary cross-entropy to 
cross entropy is done straightforwardly:

We maximize the probability of the true class! 

             

                        

    Let  be the one-hot encoding of the label 
(vector of length K).

 Then, 

Question for understanding: what happens if K = 2?

̂y = f(x, θ), p = softmax(ŷ)

pi =
e ̂yi

∑K
j=1 e ̂yj

yi

l(y, ̂y) = ∑
i

yi log pi → max



MULTINOMIAL LOGISTIC REGRESSION: SUMMARY
We can use linear mapping + one-hot encoding + 
cross-entropy loss.

For a linear model, the problem is still convex

Can be solved by optimization techniques for 
convex problems.

In practice, often run stochastic gradient descent

Instead of one decision boundary, we have many!



LINEAR MODEL FOR CLASSIFICATION: SUPPORT VECTOR MACHINE

For linear support vector machine we want to find 
a separating hyperplane for two classes. 



LINEAR MODEL FOR CLASSIFICATION: SUPPORT VECTOR MACHINE

For linear support vector machine we want to find 
a separating hyperplane for two classes. 

Consider 2D case.

A lot of possible solutions for 

Support vector is an element of the training set 
that would change position of the hyperplane if 
removed.

a, b, c



LINEAR MODEL FOR CLASSIFICATION: SUPPORT VECTOR MACHINE

Define hyperplanes such that

The plane  is the median in-between, where

 

(w, xi) + b ≥ + 1 when yi = + 1
(w, xi) + b ≤ − 1 when yi = − 1

H0

(w, x) + b = 0



MAXIMIZING THE MARGIN
We want a classifier (=linear separator) with as big margin, as possible.

The distance between a point  and a line 

 is (elementary geometry)

So the distance between  and  is 

 and the total distance between  and  is

To maximize the margin, we need to minimize 

(x0, y0)
Ax + By + c

|Ax0 + By0 + c |

A2 + B2

H0 H1
1

∥w∥
H1 H2

2
∥w∥

∥w∥



SVM LOSS FUNCTION
The final loss function for SVM has the form

Where  is the regularization parameter which controls the 
misclassification (indeed, if the two sets are not separable, we 
need to regularize

The problem is convex, but non-smooth.

Also, we only have scalar products of  in this 
formulation!

1/2 | |w | |2 + C∑
i

(max(0,1 − yi(wT xi + b)) → min

C

(w, xi)



GOING FROM LINEAR MODEL TO NON-LINEAR MODEL

What happens, if the data is not linearly 
separable?

Linear decision boundary can not split the data
into two classes.

We need to use non-linear decision boundary.

Question: How we can do that, while still leaving 
model linear?



HIGH-DIMENSIONAL FEATURE MAP
Lets get back to the start of the lecture, where we 
considered the following function:

We can say that instead of features  we use 
features , 
 With such features, the dataset can become 
linearly separable!
However, if n is large, linear classification becomes 
more and more complicated.
Here where kernel trick emerges.

f(x, θ) =
n

∑
j=1

θj fj(x)

x
f1(x) f2(x)…, fn(x)



KERNEL TRICK
Instead of working with  explicit feature map

 (we will need to store n coefficients 
then)
We can work with scalar products 

It can be shown, that all of the loss functions can 
be written in terms of the kernel function, 
we don’t need the explicit feature map!

[g(xi)]j = fj(xi)

(g(xi), g(xk)) = K(xi, xk)



HOW WE CAN TRANSFORM THE PROBLEM
This is called the primal problem (only for the linearly separable data!!!!  )

It can be shown, that it can be reformulated as a dual problem (highly non-trivial derivation!, see https://
engineering.purdue.edu/ChanGroup/ECE595/files/Lecture20_SVM2.pdf)

 where  is the set of non-zeros in 

minimize
w,w0

1
2

∥w∥2
2

 subject to yj (wT xj + w0) ≥ 1, j = 1,…, N .

maximize
λ≥0

−
1
2

N

∑
i=1

N

∑
j=1

λiλjyiyjxT
i xj +

N

∑
j=1

λj

 subject to 
N

∑ λjyj = 0.

w* = ∑
j∈𝒱

λjyjxj 𝒱 λ

https://engineering.purdue.edu/ChanGroup/ECE595/files/Lecture20_SVM2.pdf
https://engineering.purdue.edu/ChanGroup/ECE595/files/Lecture20_SVM2.pdf


FINALLY! KERNEL TRICK!

We can replace  with  and get the non-linear SVM.

Question: How to get the decision boundary from ?

maximize
λ≥0

−
1
2

N

∑
i=1

N

∑
j=1

λiλjyiyjxT
i xj +

N

∑
j=1

λj

 subject to 
N

∑ λjyj = 0.

x⊤
i xj K(xi, xj)

λ



STANDARD KERNELS

Kernel function  has to be positive definite (generalization of positive definite 
matrices) 

Examples:
1. Linear kernel: 

2. Polynomial kernel: 

3. Gaussian (RBF) kernel: 

K(x, y)

K(xi, xj) = xT
i xj

K(xi, xj) = (γxT
i xj + r)d

K(xi, xj) = exp(−γ | |xi − xj | |2 )



KERNEL METHODS: PROS AND CONS

1. Can handle complex non-linear decision boundaries
2. Need to work with a kernel matrix of size , where N is the size of the dataset. 

3. Complexity typically grows as . Good for small datasets, can not scale easily to 
million-sized dataset.
4. Some of those problems can be solved by inverting the kernel trick , but it is an 
advanced topic (see Random Fourier Features, if interested).

N × N
𝒪(N3)



KERNEL TRICK FOR REGRESSION

One can easily apply kernel trick for regression.

In fact, it is equivalent to the linear model of the form

, i.e. the linear model with dimension equal to the number of 

samples in the dataset. 

Instead of solving least squares problems, one has to carefully regularize the solution

f(x, θ) =
N

∑
i=1

θiK(x, xi)



RECAP OF LECTURE 3

- Linear regression
- Logistic regression
- Support vector machine
- Kernel trick



NEXT LECTURE

Classical ML: 
Decision trees, 
random forests, 
boosting.


